

Institute of Automation and information technologies **Department of** Cybersecurity, information processing and storage

EDUCATIONAL PROGRAM 6B06301 "Information Security"

Code and classification of the field of education: <u>6B06</u> ''Information and communication technologies''

Code and classification of training directions: <u>6B063 "Information security"</u> Group of educational programs: <u>B058 "IT security"</u>

Level based on NQF: <u>6</u> Level based on IQF: <u>6</u> Study period: <u>4 years</u> Amount of credits:<u>240</u>

Almaty 2023

Educational program <u>6B06301 "Information security"</u> was approved at the meeting of K.I.Satbayev KazNRTU Academic Council Minutes # 5 dated "24" November 2022.

Was reviewed and recommended for approval at the meeting of K.I.Satbayev KazNRTU Educational and Methodological Council Minutes # 3 dated "17" November 2022.

Educational program <u>6B06301</u> "Information security" was developed by Academic committee based on direction <u>6B063</u> "Information security".

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson	of Academic Com	mittee:		
Viktor V.		Chairman	Kazakhstan Information Security	n H
Pokusov			Association	23
Teaching staf	f:			Ð
Ryskhan Zh.	Candidate of	Head of the	NCJS "Kazakh National Research	
Satybaldiyeva	technical	Department	Technical University named after	
	Sciences	"Cybersecurity,	K.I.Satpayev", internal phone: 70-60	1
		Information		1 al
v	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Processing and		faller
		Storage",		F10
		Associate		
		Professor		
Evgeniya Zh.	Candidate of	Associate	NCJS "Kazakh National Research	1
Aitkhozhaeva	technical	Professor	Technical University named after	Himson
	Sciences, docent		K.I.Satpayev", internal phone: 73-61	0
Galim Z.	Doctor of	Professor	NCJS "Kazakh National Research	-
Kaziev	technical		Technical University named after	Hazun
	Sciences		K.I.Satpayev", internal phone: 73-61	Ours
Dulat N.	Doctor of	Professor	NCJS "Kazakh National Research	0
Shukaev	technical		Technical University named after	Jaun
	Sciences		K.I.Satpayev", internal phone: 73-61	P
Birzhan I.	Candidate of	Associate	NCJS "Kazakh National Research	T.
Zhumagaliev	technical	Professor	Technical University named after	M
	Sciences, docent		K.I.Satpayev", internal phone: 73-61	Cr.
Employers:		D 11		
Amiret T.	Candidate of	President	Association of Innovative Companies	1
Konuspaev	physical and		of the Special Economic Zone "Park	A.Kanf
	mathematical		of Innovative Technologies"	H.ha
Onlyan 71	Sciences	Donuty Comment	RSE "Institute of Information and	1
Orken Zh.	PhD, Associate Professor	Deputy General Director	Computing Technologies"	5'
Mamyrbayev	FIGIESSOF	Director	Computing reenhologies	10
Students	11	1.4	NCIC Ill'anglik National Davast	T
Nurseyit T.	3	lst year student	NCJS "Kazakh National Research Technical University named after	1
Kapysh				Davaal
			K.I.Satpayev", mobile phone: +77714521579	pering

Table of contents

	List of abbreviations and designations	1
	e	4
1	Description of educational program	5
2	Purpose and objectives of educational program	6
3	Requirements for the evaluation of educational program learning	6
	outcomes	
4	Passport of educational program	7
4.1	General information	7
4.2	Relationship between the achievability of the formed learning	11
	outcomes according to educational program and academic disciplines	
5	Curriculum of educational program	44

List of abbreviations and designations

EP – educational program

BC – basic competencies

PC – professional competencies

LO - learning outcomes

MOOC – massive open online courses

NQF – National Qualifications Framework

IQF – Industry Qualifications Framework

IT – information Technology

1. Description of educational program

The educational program 6B06301 "Information Security" is aimed at teaching students general education, basic and specialized disciplines with the achievement of relevant competencies:

- To provide practice-oriented training of specialists in the field of information security, ensuring the security of systems and networks, cryptographic and technical protection of information for operational and project activities.

- To prepare graduates for production and technological activities related to the process of organization, design, provision, management of databases, network technologies, cloud technologies, intrusion prevention and detection systems, organizational and legal aspects of information security, focused on meeting the expectations and requirements of users; to organizational and managerial activities related to maintenance, organization and information security management.

- Create conditions for continuous professional self-improvement, development of social and personal competencies of graduates (broad cultural outlook, active citizenship, commitment, organization, diligence, sociability, ability to argue and make organizational and managerial decisions, knowledge of modern information technologies, fluency in several languages, striving for selfdevelopment and commitment to ethical values and a healthy lifestyle life, the ability to work in a team, responsibility for the final result of their professional activities, civic responsibility, tolerance), social mobility and competitiveness in the labor market.

The content of the disciplines of the educational program is developed taking into account the relevant educational programs of the world's leading universities, the international classifier of professional activity in the field of information security.

Graduates of the educational program 6B06301 "Information Security" are focused on the organization, design and development of systems for the protection and security of information for applied purposes for all sectors of the economy, government organizations and other fields of activity.

The educational program ensures the application of an individual approach to students, the transformation of professional competencies from professional standards and qualification standards into learning outcomes. Student–centered learning is provided - the principle of education, which assumes a shift of emphasis in the educational process from teaching (as the main role of the teaching staff in the "translation" of knowledge) to teaching (as an active educational activity of the student).

The educational program provides training of specialists in the field of information security in 3 directions:

- security of systems and networks. Training of specialists who ensure the security of systems and network technologies of a wide range. The educational program provides the acquisition of knowledge on computer information security technologies, network technologies, organization of computing systems and networks, administration of systems and networks, security of cloud technologies,

acquisition of skills in designing and developing secure databases, intrusion prevention and detection systems.

- cryptographic protection of information. Training of specialists in cryptographic protection of information. The educational program provides the acquisition of knowledge on the mathematical foundations of cryptography, various models, methods and means of cryptographic information protection, computer information protection technologies, the development and design of cryptographic information protection tools, the basics of standardization and certification of information security tools, the acquisition of skills in the construction of cryptographic information security tools.

- technical protection of information. Training of specialists in technical protection of information. The educational program provides the acquisition of knowledge in the field of electronics, digital circuitry, microprocessor technology, programming of microcontrollers, knowledge of various methods and means of technical protection of information, organization and management of the information security service, ensuring the continuous functioning and operational activities of IT support.

The educational program was developed on the basis of an analysis of the labor functions of information security engineers, system administrators, information security specialists stated in professional standards.

Representatives of Kazakhstani companies and associations, specialists of departmental structures in the field of protection and security participated in the development of the educational program.

In case of successful completion of the full bachelor's degree course, the graduate is awarded a bachelor's degree in the field of information and communication technologies according to the educational program 6B06301 "Information Security".

2. Purpose and objectives of educational program

Purpose of EP: Preparation of a competitive generation of technical specialists in the field of information protection and safety for the labor market, an initiative, able to work in a team, possessing high personal and professional competences.

Tasks of EP:

- socio-humanitarian and professional training of bachelors in the field of information security in accordance with the development of science and production, as well as with the needs of clusters of information security of Kazakhstan, National Security of the Republic of Kazakhstan, national research centers, master's and doctoral studies of higher educational institutions;

- integration of educational and scientific activities;

– establishing partnerships with leading universities of the near and far abroad in order to improve the quality of education;

- expansion of relations with customers of educational services, employers in order to determine the requirements for the quality of training of specialists,

conducting courses, seminars, master classes, internships, industrial practices.

The content of the educational program "Information Security" is implemented in accordance with the credit technology of training and is carried out in the state and Russian languages.

The educational program will make it possible to implement the principles of the Bologna process. Based on the students' choice and independent planning of the sequence of studying disciplines, they independently form an individual study plan for each semester according to the Working Curriculum and the Catalog of elective disciplines. The volume of mathematical, natural science, basic and language disciplines has been increased in the educational program.

The following disciplines are studied: "Digital circuitry", "Algorithmization and programming basics", "Information fundamentals of information security", "Organizational and legal aspects of information security and computer forensics", "Computer architecture and consistency of operations", "Security of operating systems", "Cryptographic information security systems", "Security of cloud technologies", "Computer Networks", "Blockchain Technologies", "Computer Information Protection Technologies", "Design and protection of server databases", "Social Engineering and Ethical Hacking", "Technical means and methods of information protection", "Designing secure Web applications", etc.

Students have internships in banking structures, government and departmental structures, in such companies as JSC "National Information Technologies", LLP "Pacifica" - integrator in the field of information security, LLP "Galaxy", the Center for Analysis and Investigation of Cyber Attacks, etc.

According to the academic mobility program, the best students have the opportunity to study at leading foreign universities according to the corresponding EP.

3. Requirements for evaluating the educational program learning outcomes

The educational program was developed in accordance with the State mandatory Standards of higher and Postgraduate Education, approved by the Order of the Minister of Science and Higher Education of the Republic of Kazakhstan dated July 20, 2022 No. 2 (registered in the Register of State Registration of Regulatory Legal Acts under No. 28916) and reflects the learning outcomes on the basis of which curricula are developed (working curricula, individual curricula of students) and working curricula in disciplines (syllabuses). Mastering disciplines of at least 10% of the total volume of credits of the educational program using MOOC on the official platform https://polytechonline.kz/cabinet/login/index.php/, as well as through the study of disciplines through the international educational platform Coursera https://www.coursera.org/.

Evaluation of learning outcomes is carried out according to the developed test tasks within the educational program in accordance with the requirements of the state mandatory standard of higher and postgraduate education.

When evaluating learning outcomes, uniform conditions and equal opportunities are created for students to demonstrate their knowledge, skills and

abilities.

When conducting an interim certification in an online form, online proctoring is used.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of the	6B06 "Information and communication technologies"
	field of education	
2	Code and classification of	6B063 "Information security"
	training directions	
3	Educational program group	B058 "IT security"
4	Educational program name	6B06301 "Information security"
5	Short description of educational program	The program corresponds to the educational programs of the world's leading universities and the international classifier of professional activity in the field of information security. OP is focused on the organization, design and development of systems for the protection and security of information for applied purposes for all sectors of the economy, government organizations and other fields of activity
6	Purpose of EP	Preparation of a competitive generation of technical specialists in the field of information protection and safety for the labor market, an initiative, able to work in a team, possessing high personal and professional competences.
7	Type of EP	Новая
8	The level based on NQF	6
9	The level based on IQF	6
10	Distinctive features of EP	Нет
11	List of competencies of educational program	Information security, Security of network technologies, Cryptographic protection of information, Technical protection of information.
12	Learning outcomes of educational program	ON1: Ensure the integrity and reliability of data in databases using integrity constraints, views, triggers, and stored procedures. Perform backup, restore, monitoring and audit of database systems. Use the capabilities of the SQL language to protect database systems, manage access rights, encrypt database objects. ON2: The ability to understand and apply methodologies and technologies for performing graphic work on a computer, express technical ideas using a drawing, present diagrams in a graphical form, use computer graphics and graphic dialogue tools.ON3: ON3: Use the fundamental concepts of mathematics, physics and mechanics in professional activities. Conduct mathematical proofs, solve mathematical problems and problems. Be competent in the application of information theory to ensure the protection and security of information.

<u> </u>	
	ON4: Apply the basic methods of formalizing reasoning,
	the basic concepts of the theory of logical functions, theory
	of algorithms, graph theory, coding theory; use the
	conceptual apparatus and methods of discrete mathematics
	to analyze mathematical models in solving problems of
	professional activity.
	ON5: Use the methods of constructing various models of
	data types, information processing algorithms; make
	rational use of the opportunities provided by the
	algorithmization technique. Apply a unified modeling
	language, implement a structural and object-oriented
	approach to working with tools.
	ON6: Perform typical tasks of design, deployment and
	technical support of local and global networks; Administer
	networks in modern operating systems. Ensure the safety
	and resiliency of the network and servers.
	ON7: Apply database technology for the safe organization,
	receipt, storage, processing and transmission of
	information. Own the basics of designing secure databases
	and ensuring their protection. Ensure the integrity and
	reliability of data in databases. Be competent in the
	creation, development and design of secure Web
	applications.
	ON8: now the architecture of computer systems, the
	principles of construction. Select the elements of
	electronic circuits, make the necessary calculations, make
	a mathematical description of the functioning of the
	devices and determine their characteristics; determine the
	parameters of semiconductor devices and circuit elements.
	ON9: Know the basics of information security and its
	problematic aspects. Be able to apply basic indicators of
	information security. The ability to apply biometric
	information security technologies. To be able to use a
	number of implementation of algorithms to solve practical
	problems
	ON10: The ability to use virtualization systems and cloud
	technologies to solve practical problems and find
	vulnerabilities of virtual machines. Be able to apply
	standard recommendations for securing cloud technologies
	and the Internet of things.
	ON11: Analyze the principles of building cryptographic
	algorithms; develop and apply cryptographic systems;
	analyze and solve the issues of cryptographic information
	protection and the use of modern cryptographic methods
	of information protection. The ability to use the mathematical foundations of anytosystem algorithms
	mathematical foundations of cryptosystem algorithms.
	ON12: Select elements of electronic circuits, make the
	necessary calculations. Participate in the development of
	projects of various electrical components and assemblies
	using microcontrollers. Program in C language.
	ON13: Ability to perform hands-on analysis and use data
	leak prevention systems. To manage security policies and

		all types of work of the information protection service. The
		ability to determine the optimal structure of the
		information protection service. Develop regulatory and
		methodological documents on the organization and
		functioning of the information protection service.
		ON14: The ability to identify possible channels of
		information leakage, to carry out technical measures for
		protection. Apply passive and active methods and means
		of information protection. Perform engineering and
		technical measures to protect and practically apply
		measures to protect objects and information from
		reconnaissance equipment.
		ON15: The ability to think logically, master the methods
		of induction and deduction, determine cause-and-effect
		relationships, understand various situations, and be
		economically literate.
		5
		ON16: The ability to organize measures to ensure their
		own safety and the safety of teams in professional
10		activities and social emergencies.
	Education form	Full-time, online
	Period of training	4 years
	Amount of credits	240
16	Languages of instruction	Kazakh, Russian
17	Academic degree awarded	Bachelor's degree in information and communication
		technologies
18	Developer(s) and authors	R.Satybaldieva, E.Aitkhozhaeva

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

			Amount					G	enera	ated	learı	ning	outco	mes	(code	5)			
№	Discipline name	Short description of discipline	of credits	ON1	ON2	ON3	ON4										ON14	ON15	ON16
		Cyc	cle of gen					_	ines										
	1			uire	ed co	mpo	nent												-
1	Foreign language	English is a compulsary subject. According to the results of placement test or IELTS score, students are placed into groups and disciplines. The name of the discipline corresponds to the level of English. When passing from level to level, prerequisites and	10			v												v	
2	Kazakh (russian) language	postrequisites are respected. Kazakh (Russian) language In this course author considers socio-political, socio-cultural spheres of communication and functional styles of the modern kazakh (russian) language. The course covers the specifics of the scientific style to develop and activate professional communication skills and abilities of students. Also it allows students to leavn the basics of scientific style practically and develop the	10															v	

		and semantic text analysis.										
3	Physical culture	The purpose of the discipline is										
		to master the forms and										
		methods of forming a healthy										
		lifestyle within the framework										
		of the professional education										
		system. Familiarization with										
		the natural-scientific basics of										
		physical education, knowledge	8									v
		of modern health-improving										
		technologies, basic methods of										
		independent physical										
		education and sports. As part										
		of the course, the student will										
		master the rules of judging in										
		all sports.										
4	Information and	The aim of the course is to gain										
	Communication	theoretical knowledge in										
	technology (MOOC)	information processing, the										
		latest information										
		technologies, local and global										
		networks, the methods of	5				v					
		information protection;										
		Getting the right use of text										
		editor editors and tabulators;										
		creation of base and different										
		categories of applications.										
5	History of	The purpose of the discipline is										
	Kazakhstan	to provide objective historical										
		knowledge about the main										
		stages of the history of	5								v	
		Kazakhstan from ancient times										
		to the present day; introduce										
		students to the problems of the										

		formation and development of										Τ	
		statehood and historical and											
		cultural processes; contribute											
		to the formation of humanistic											
		values and patriotic feelings in											
		the student; teach the student to											
		use the acquired historical											
		knowledge in educational,											
		professional and everyday life;											
		evaluate the role of Kazakhstan											
		in world history.											
6	Philosophy (MOOC)	The purpose of the discipline is											
		to teach students the theoretical											
		foundations of philosophy as a											
		way of knowing and spiritually											
		mastering the world;											
		developing their interest in											
		fundamental knowledge,											
		stimulating the need for											
		philosophical assessments of	~										
		historical events and facts of	5									v	
		reality, assimilating the idea of											
		the unity of the world historical											
		and cultural process while											
		recognizing the diversity of											
		their skills in applying											
		philosophical and general											
		scientific methods in											
		professional activities.											
7	Module of socio-	The objectives of the disciplines are											
	political knowledge	to provide students with explanations											
	(sociology, political	on the sociological analysis of	3									v	
	science) (MOOC)	society, about social communities and personality, factors and patterns	-										
		of social development, forms of											
		or social accorophicit, forms of		1				 1	1	1			

										<u> </u>			1		
		interaction, types and directions of													
		social processes, forms of regulation													
		of social behavior, as well as primary													
		political knowledge that will serve as													
		a theoretical basis for understanding													
		social -political processes, for the													
		formation of political culture,													
		development of a personal position													
		and a clearer understanding of the													
		extent of one's responsibility; help to													
		master the political, legal, moral,													
		ethical and socio-cultural norms													
		necessary to act in the interests of													
		society, form personal responsibility													
		and achieve personal success.		+					_			 			
8	Module of socio-														
	political knowledge	study the real processes of cultural													
	(cultural studies,	creative activity of people who create													
	psychology)	material and spiritual values, identify													
		the main trends and patterns of													
	(MOOC)	cultural development, changes in													
		cultural eras, methods and styles,	5											v	
		their role in the formation of man and													
		the development of society, as well as													
		master psychological knowledge for													
		the effective organization of interpersonal interaction, social													
		adaptation in the field of their													
		professional activities.													
			la of con		duracti										L
		Cyc	le of ger					ies							
	I		Co	mpone	ent of c	noice	,			<u>г г</u>	r	 			
9	Fundamentals of	The course introduces students				1									
	anti-corruption	to the improvement of socio-													
	culture and law	economic relations of				1									
		Kazakhstan society,	~			1									
		psychological features of	5											v	v
		corrupt behavior. Special				1									
		attention is paid to the													
		-													
		formation of an anti-corruption													

	1	1 1 1 1 1 1 1 1 1 1 1 1					<u> </u>	1	I	I	I	<u> </u>		1
		culture, legal responsibility for												
		acts of corruption in various												
		spheres. The purpose of												
		studying the discipline												
		«Fundamentals of anti-												
		corruption culture and law» is												
		to increase public and												
		individual legal awareness and												
		legal culture of students, as												
		well as the formation of a												
		knowledge system and a civic												
		position on combating												
		corruption as an antisocial												
		phenomenon. Expected results:												
		to realize the values of moral												
		consciousness and follow												
		moral norms in everyday												
		practice; to work on improving												
		the level of moral and legal												
		culture; to use spiritual and												
		moral mechanisms to prevent												
		corruption.												
10	Fundamentals of	Discipline studies the												
10		foundations of economics and												
	entrepreneurship	entrepreneurial activity from												
		the point of view of science and												
		law; features, problematic												
		aspects and development	5										v	v
		prospects; the theory and												
		practice of entrepreneurship as												
		a system of economic and												
		organizational relations of												
		business structures; The												
		readiness of entrepreneurs for												

		innovative susceptibility. The discipline reveals the content of entrepreneurial activity, the stages of career, qualities, competencies and responsibility of the entrepreneur, theoretical and practical business planning and economic examination of business ideas, as well as the analysis of the risks of										
		innovative development, the introduction of new technologies and technological solutions.										
	safety	The discipline studies the tasks of ecology as a science, environmental terms, the laws of the functioning of natural systems and aspects of environmental safety in the conditions of labor activity. Monitoring of the environment and management in the field of its safety. Sources of pollution of atmospheric air, surface, groundwater, soil and ways to solve environmental problems; life safety in the technosphere; natural and man-made emergencies	5								v	v
12	2 Algorithmization and programming basics	The course explores the fundamental concepts of programming: operator,	4		v	v						

	variable, procedure, function, data type. The main structures of algorithms are considered, such as linear, branched, cyclic. The course examines the basic forms of data representation: strings, structures, arrays, lists. Separate topics are devoted to the creation of widely used sorting algorithms, searching for the minimum and maximum values in an array, string processing, iterative and recursive algorithms, building flowcharts of algorithms and developing programs based on them.								
13	Computing systems of various architectures are the hardware part of information technology, which reached a global character and content by the end of the XX century. Multiprocessor systems, which also include computer networks, allow by changing their architecture to optimize the parameters of the main processes of information technology: processing, accumulation, data transmission and knowledge representation. *	5		v	v				

Operating System Security	The purpose of the discipline is to master the basic means and methods of ensuring information security. Upon completion, students will learn to understand the principles of building information security. Will be able to classify and evaluate threats to information security; master professional terminology in the field of information security. Will be able to use the means of operating systems to ensure the efficient and safe functioning of automated systems; learn how to evaluate the effectiveness and reliability of	5			v		v			
Introduction to specialty	systems; acquire skills in planning the security policy of operating systems Security objects. Data processing systems. Directions of information security. Information security and problematic aspects. Basic information security indicators. Information security risks. Socio-technical attacks. Technologies for the protection of information resources. Methods and tools of information protection.	5		v		v				

		1 1					 					
		Software products for										
		information protection.										
		Physical tools to protect										
		information. Prospects for the										
		development of information										
		security systems,										
		intellectualization. Information										
		security management.										
16	Introduction to Web	The methods of designing										
	Programming	WEB applications using										
		modern web programming										
		technologies and software										
		tools for solving applied										
		problems using methods of										
		debugging and testing web										
		applications in the loop-back										
		system are studied. The										
		discipline studies the basics of										
		creating web applications;										
		classification of software tools;										
		structure of web programs;	6									
		web applications running on	6		v	v						
		the client and server side;										
		principles of developing an										
		interactive user interface;										
		organization of navigation;										
		interface of server interaction										
		with application programs;										
		syntax and notations of markup										
		languages, data structures, and										
		scripting languages. Students										
		gain skills and an										
		understanding of the current										
		prospects and trends in the										

		11				1		1						
		development of web												
		programming.		6.1	•		1.							. <u> </u>
			Cycle				-							
17	D' (Univ	versit	ty co	ompo	nen		1 1			r		
17	Discrete Mathematics	The discipline deals with coding theory, set theory, graph theory, mathematical logic. Namely, the foundations of coding theory, set theory, graph theory; theory of logic algebra; mathematical apparatus for the synthesis and analysis of digital devices, transform Boolean functions, synthesizing minimal combinational circuits; performing coding.	5			v	v							
18	Information basis of information protection	Application of information theory in information security systems, basic concepts of information theory, measures and forms of representation of discrete information, number systems for representing numerical information, problems of information transmission, alphabetical representation of information, basics of encoding and encryption of discrete informatio	5			v	v							
19	Computer graphics	The course studies the generation of images on a computer, namely the	5		v									

	1	1		 			 1	,	 			 	
		mathematical and algorithmic											
		foundations of computer											
		graphics, raster graphics											
		algorithms, 2D and 3D											
		modeling, polygonal models.											
		The technologies of using the											
		OpenGL graphics library for											
		generating 2D and 3D images,											
		the use of auxiliary libraries are											
		considered. After studying the											
		discipline, students will be able											
		to master any graphic tools,											
		continue to study and use											
		graphic libraries.											
20	Computer Networks	The program of the training											
		course is aimed at familiarizing											
		students with the basics of											
		organization, construction,											
		architecture and principles of											
		functioning of computer											
		networks. The course focuses											
		on the application of skills to											
		the organization of real											
		networks and examines the	5				v						
		communication tools,											
		protocols and standards of											
		networks. As a result of											
		mastering the discipline,											
		students will learn how to											
		configure and configure											
		communication tools, select											
		firewalls, and operate											
		computer networks.											
21	Mathematics I	The course is devoted to the	5		v	v							

		study of the basic concepts of										
		higher mathematics and its										
		applications. The main										
		provisions of the discipline are										
		applied in the teaching of all										
		general education engineering										
		and special disciplines taught										
		by graduate departments. The										
		course sections include										
		elements of linear algebra and										
		analytical geometry, an										
		introduction to analysis,										
		differential calculation of										
		functions of one and several										
		variables. Methods for solving										
		systems of equations, problems										
		of using vector calculations in										
		solving problems of geometry,										
		mechanics, and physics are										
		considered. Analytical										
		geometry on a plane and space,										
		differential calculation of										
		functions of one variable,										
		derivatives and differentials,										
		study of the behavior of										
		functions, derivative and										
		gradient in direction,										
		extremum of a function of										
		several variables.										
22	Mathematics II	The discipline is a continuation										
		of Mathematics I. sections of										
		the course include integral	5	v	۲ I	v						
		calculus of a function of one										
		variable and several variables,										1

		series theory. Indefinite integrals, their properties and methods of their calculation. Certain integrals and their application. Incorrect integrals. Numerical series theory, functional series theory, Taylor and Macloren Series, application of series to approximate calculations.											
	Mathematics III	The discipline is a continuation of Mathematics II. The course includes sections: ordinary differential equations and elements of probability theory and mathematical statistics. Differential equations with separable variables, homogeneous, in full differentials, linear inhomogeneous differential equations with constant coefficients, systems of linear differential equations with constant coefficients, finding the probability of events, calculating the numerical characteristics of random variables, using statistical methods for processing experimental data are studied.	5		v	v						v	
24	Microelectronics	The principles of operation, parameters, characteristics and features of the use of	5		v			v		v			

25	Basics of	semiconductor devices are considered. Designing various circuits of amplifiers of electrical signals and generators based on diodes, bipolar and field-effect transistors and testing the features of their functioning. Operational amplifiers. Differential amplifiers. Feedback. The influence of feedback on the main indicators and characteristics of amplifiers. Power amplifiers. Filter classification and composition This course examines the basic										
	cryptographic protection of information (Coursera)	concepts, terms and concepts of the discipline. Cryptology, cryptography, cryptanalysis. Durability, security, imitation durability, authenticity. Modern cryptographic methods of information protection. Basic principles of building cryptoalgorithms.	5		v				v			
26	00	The course examines the basics of designing secure databases and ensuring their protection. Students will learn how to use database technologies to solve practical problems of developing and protecting secure server databases. In	5	v			v					

		· · · · · ·		1	 		1	1			 	,	 ,	
		addition, they will study ways												
		of storing data at the physical												
		level, types and ways of												
		organizing file systems; -												
		understanding problems and												
		the main ways to solve them												
		with collective access to data;												
		– exploring the capabilities of												
		DBMS that support various												
		data organization models.												
27	Digital Device	The program of the course is												
	Design	aimed at acquainting students												
		with the basics of designing												
		digital devices. The course is												
		devoted to the application of	5			v				v				
		formal logic and the theory of												
		automata for solving practical												
		problems of designing digital												
		devices.												
28	Blockchain	Principles, methods and means												
	technologies	of blockchain technology to												
		ensure information protection,												
		counter information security												
		threats. There also discusses												
		the principles of using a	5					v	v		v			
		replicated distributed block												
		database to ensure information												
		security and the application of												
		the blockchain network in												
		various fields.												
29	Physics I	Objectives: to study the basic												
		physical phenomena and laws	5		v	v								
		of classical, modern physics;	5		v	v								
		methods of physical research;												

		1		, ,			, , ,	 -	1	1			
		the relationship of physics with											
		other sciences. The following											
		topics are considered:											
		mechanics, dynamics of											
		rotational motion of a solid											
		body, mechanical harmonic											
		waves, fundamentals of											
		molecular kinetic theory and											
		thermodynamics, transport											
		phenomena, continuum											
		mechanics, electrostatics,											
		direct current, magnetic field,											
		Maxwell equations.											
30	Physics II	The course studies the laws of											
		physics and their practical											
		application in professional											
		activity. Solving theoretical											
		and experimental-practical											
		educational problems of											
		physics for the formation of the											
		foundations in solving											
		professional problems.											
		Assessment of the degree of											
		accuracy of the results of	5		v	v							
		experimental or theoretical											
		research methods, modeling of											
		physical condition using a											
		computer, study of modern											
		measuring equipment,											
		development of skills for											
		conducting test studies and											
		processing their results,											
		distribution of the physical											
		content of applied tasks of the											

				г	<u> </u>							r
		future specialty.					 					 ļ
31	Digital Circuitry	Fundamentals of building										
		electrical circuit diagrams of										
		nodes (blocks) of various										
		electronic devices, including										
		modern computers, methods of										
		using various (semiconductor)										
		logic elements. Creation of										
		examples of schematic	5		v		v			v		
		diagrams of the simplest	5		•		v			•		
		electronic components based										
		on CAD "Altium Designer"										
		and design of the printed										
		circuit board. Simulation of the										
		operation of electrical circuits										
		using various programs (for										
		example, MICROCAP).										
32	Training practice	The main purpose of the										
		training practice is to acquire										
		students' practical experience										
		in the field of information										
		security. The training practice										
		is intended for the formation of										
		practical skills and										
		professional training of										
		students. The objectives of the	2					v			v	
		practice include participation										
		in the development and design										
		of cryptographic information										
1		security tools, the basics of										
		standardization and										
1		certification of information										
		security tools, acquisition of										
		skills in building secure										

		networks and systems.											
		networks and systems.	Cruele	of h	Jiasim	1:							L
			Cycle		of cho		:5						
22	Vulnerability	The purpose of mastering the	Cu	Inhou		ice							
55		discipline is theoretical and											
	analysis	practical training of students in											
	anarysis	the field of information											
		security. The course content											
		includes questions about											
		typical vulnerabilities of											
		network protocols, operating											
		systems and applications.											
		Concepts such as ethical											
		hacking and social engineering	5								v	v	
		are also considered. Methods	-										
		of attacks on software systems,											
		such as damage to program											
		memory, code injection on the											
		client or server side, etc., as											
		well as methods and properties											
		of modern programming											
		languages to prevent the											
		appearance of vulnerabilities											
		of this kind are considered.											
34	Pentest Tools	Standards and penetration											
		testing tools, their role in											
		information security audit.											
		Categories of the pentest, their											
		features. Programs and	5								v	v	
		distributions for pentest, the	5								, v	v	
		principles of their construction											
		and functionality. Using											
		pentest tools to study threats,											
		detect vulnerabilities, and											

		detect cybercrimes.												
35	Designing secure Web-based applications	The main trends in the development of Web- technologies. Basic web standards. The concept of Web applications and approaches to their development. Server controls. Structure and design of the Web application. Web application security. Development of Web services. Organization of web application security.	4					v	v					
36	Capstone project 1	The purpose of the course is to apply IT project management techniques, ways to transform ideas into a concrete solution and determine the most optimal approach to its implementation. The course participants will get a holistic view of the process, key techniques and tools necessary for the design, development and further development of their products and services.	5		v	v	v			v				
37	Capstone project 2	The course is aimed at studying and forming students' understanding of the process of attracting investments and scaling a business; the formation of practical skills in the field of attracting investments in a startup. In the	4		v	v	v			v				

		course of passing the				1	I							[
		discipline, students consider													
		-													
		the following issues: search and identification of various													
		sources of financing and													
		selection of potential investors													
		for business; applying to													
		accelerators; preparation of													
		investment documentation;													
		creating investment													
		presentations; presentation of													
		the project to a potential													
		investor.													
38	Java EE technology	Basic concepts and terms. Java													
		EE application architecture,													
		client tier, middle tier, data													
		access tier. Java EE													
		technologies at various levels.													
		Application servers,													
		component containers and	5				v	v							
		components, their relationship.													
		Types of containers. Included													
		APIs and Features: Servlet													
		API, Java Server Pages, Java													
		EE Security. Common Design													
		Patterns in Java Enterprise.													
			Cycle												
			Uni	versi	ty cor	npo	nent			 	 				
39	0	The curriculum is aimed at													
	technologies	familiarizing students with the													
		basics of cloud technologies	5						v		v				
		and virtualization, ensuring	-								·				
		their security. The course													
		focuses on the application of													

	1	1		 	1	r		 	 r					
		virtualization technologies and												
		cloud services for cloud												
		computing.												
40	Biometrics and	Biometric methods of												
	neural networks	information protection. Static												
		and dynamic biometrics.												
		Artificial neural networks.												
		Classification, areas of	4						_					
		application. Neural network	4						v					
		learning algorithms. Errors of												
		the first and second kind.												
		Neural network models of												
		biometric image recognition.												
41	Information security	The course examines the basic												
	and object-oriented	concepts of object-oriented												
	programming	programming and application												
		development. The following												
		issues are considered:												
		application vulnerabilities,												
		their classification;												
		technologies for ensuring	5								v			
		information security of	5								v			
		applications. Students gain												
		skills in using specialized tools												
		to identify vulnerabilities and												
		protect applications at the												
		design and implementation												
		stage, configuration and												
		operation.												
42		The purpose of mastering the		T			T							
		discipline is to familiarize												
	•	students with the legal and	4									v	v	
	and computer	organizational aspects of												
	forensics	information security and the												

		basics of computer forensics and cybercrime investigation. Issues addressed in the course regarding the application of regulatory legal and other documents regulating information security. Students' acquisition of knowledge and skills will help in solving crimes related to computer information, in the study of digital evidence, methods of										
		searching, obtaining and										
43	Organization and	securing such evidence. The curriculum is aimed at										
	securing databases	acquainting students with the basics of organizing secure databases, their application for solving real problems. The course is devoted to the application of database	5			v	v					
		technology for solving practical problems of database development and database applications.										
44	Fundamentals of students' research work	The course is aimed at forming a comprehensive understanding of the specifics of research work; mastering research methods that are most relevant to the subject of research; acquiring skills and abilities of independent	4	v		v					٧	

	content includes the basic concepts and classification of science and scientific information: its sources and methods of processing; types and forms of educational research and research work of university students. The requirements for the technical design of scientific work are considered.										
45	 A systematic approach to computer security, methods of checking the security of various computer network nodes. The study toolkit intruders, with their advantages and limitations. Methods for successfully identifying and resolving security problems in mixed computer networks. The study of hacking techniques and hacking techniques in the context of the use of defensive practices and recommendations set forth by these hackers.	4			v				v		
46	Main concepts of technology of protection of computer information. Principal components of protection. Main types of threats of computer information.	4			v		v				

	1			r	 	 	 			 	
		Technologies of protection									
		against viruses. Means of									
		cracking of programs.									
		Technologies of counteraction									
		to program and hardware tabs,									
		protection against interception									
		of information at the expense									
		of an electromagnetic									
		radiation. Technologies of									
		protection against interception									
		of information at the expense									
		of an electromagnetic radiation									
		on networks of									
		telecommunications.									
		Technologies of identification									
		and authentication of users and									
		processes. Technologies of									
		monitoring of an information									
		access. Technologies of									
		cryptography protection of									
		programs and data.									
47	Production practice I	The main purpose of									
		production practice I is to									
		provide students with the									
		opportunity to apply their									
		knowledge, skills and abilities									
		in a real working environment.									
		The production practice is	2					v	v		v
		aimed at acquiring practical									
		experience in the field of									
		information security.									
		Production practice is carried									
		out in public and private									
		enterprises and organizations									

		that develop, implement and								
		use organizational, hardware								
		and software methods and								
		means of protecting								
		information systems in all								
		spheres of human activity,								
		operating with critical								
		information. The tasks of the								
		internship include the								
		participation of students in the								
		organization of computer								
		information protection,								
		network technology,								
		organization of computer								
		systems and networks.								
48		The main purpose of the								
	II	production practice II is to								
		provide students with work								
		experience in real conditions								
		for conducting information								
		security of the organization.								
		Production practice is carried								
		out in public and private								
		enterprises and organizations								
		that develop, implement and	3				v	v		v
		use organizational, hardware								
		and software methods and								
		means of protecting								
		information systems in all								
		spheres of human activity,								
		operating with critical								
		information. The tasks of the								
		practice include working in a								
		team on real projects, including								

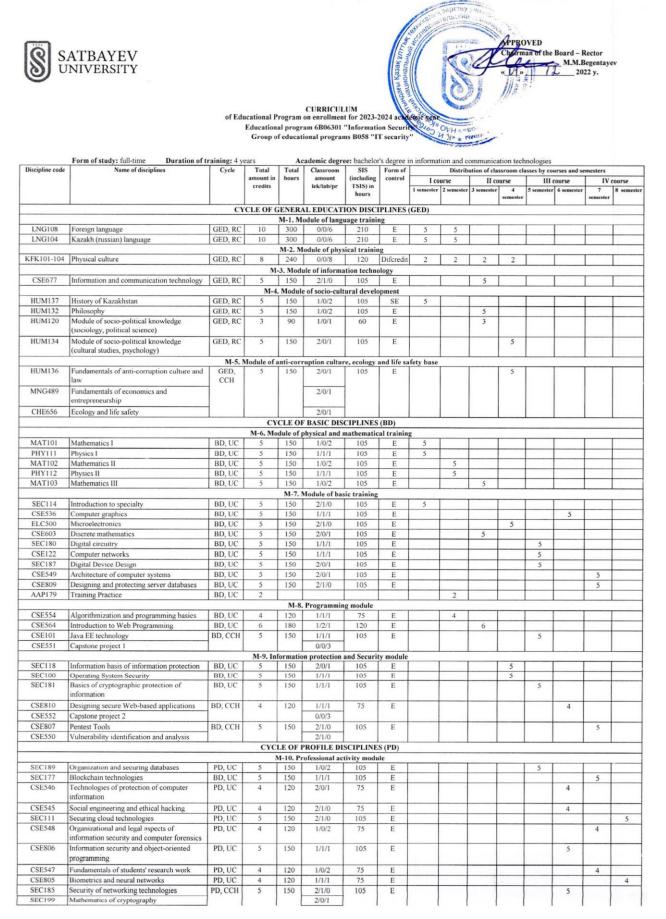
	1	1								 		 		 	
		the administration of systems													
		and networks, acquiring skills													
		in designing and developing													
		secure databases, intrusion													
		prevention and detection													
		systems, ensuring the													
		continuous functioning and													
		operational activities of IT													
		support.													
			Cycle	of pr	ofile	disc	iplin	ies					1		
			•	npon			-								
49	System and Network	The material is mostly													
	Administration	practical and contains a													
		minimal amount of theory. The													
		course is suitable both for													
		novice system administrators													
		who want to configure	5						v		v		v		
		company servers, and for	-												
		network engineers, because													
		most of the networking													
		equipment runs Linux and													
		Windows.													
50	Internet of things	Current components of typical													
	security	IoT devices; trends for the													
		future; limitations and													
		interactions between the													
		physical world and the IoT	5						v		v				
		device; key network	-												
		components for connecting an													
		IoT device to the Internet; IoT													
		security issues.													
51	Security of	The modern technologies and													
	networking	main tendencies of creation of	5						v				v		
	technologies	computer networks. Bases of	-												
L						L							I		

											-	 -	-	
		network technologies and												
		terminology. Main network												
		models. Methods of structuring												
		networks, topology, types of												
		networks, services,												
		requirements. Switching												
		methods. Technologies of												
		creation of networks.												
		Standards, protocols, access												
		methods, network												
		configurations. Routing												
		protocols, addressing,												
		switching. VLSM, CIDR,												
		VLAN technologies. Wireless												
		technologies. Design of local												
		area networks. Cybersecurity.												
		Vulnerabilities of software and												
		hardware for network												
		technologies, classification.												
		Cybersecurity of networking												
		technologies. Safety of												
		corporate networks. Security												
		management.												
52	Cryptographic	Block encryption. Components												
	Systems	execution modes of block												
		ciphers. Streaming encryption.												
		The random number generator.												
		The principles of using	5		v	v		v		v				
		pseudo-random number												
		generator streaming												
		encryption. Asymmetric												
		encryption systems. Effective												
		encryption. The distribution of												

		[-	1		 	1	 			1	,	 ı	
		keys. Cryptographic protocols.													
		The hash functions. Electronic		1											
		digital signature.		1											
53	Mathematics of	The basic concepts,													
	cryptography	terminology and concepts of													
		the discipline. Cryptology,													
		cryptography, cryptanalysis.													
		Encryption. Durability,													
		security, imitoprotection													
		authenticity. Modern methods													
		of cryptographic information													
		protection and encryption. The													
		basic principles of encryption													
		algo-rithms. Mathematical													
		Foundations of algorithms	_												
		asym-metric cryptosystems.	5		v	v					v				
		Mathematical foundations of													
		algo-rithms of symmetric													
		cryptosystems.													
		Researchmethods of													
		cryptographic algorithms.													
		Models of encryption systems.													
		Mathematical Foundations of													
		algorithms of digital signature.													
		Managing cryptographic keys.													
		Steganography. Mathematical													
		foundations and algorithms.		1											
5/	Microcontrollers	Programmable logical		+											
54		controllers (PLK, PLC)		1											
		represent microprocessor		1											
		devices, are intended for	5	1					v			v			
		execution of algorithms of	5	1					v			v			
		management, the principle of		1											
		work of PLK consists in													

				 	 	 1	 		1			
		collecting and data processing										
		according to the application										
		program of the user with										
		delivery of the operating										
		signals on actuation										
		mechanisms; PLK can process										
		discrete and analog signals,										
		operate valves, servo-drivers,										
		converters of frequency and										
		other devices; solvable tasks										
		represent a set of programs;										
		tasks can cyclically be caused,										
		on an event, with the maximum										
		frequency.										
55	Organization and	Purpose of the information										
		security service. Information										
	information security											
	service	information security										
		management body and an										
		integral part of a security										
		system. Types and types of										
		organizational structures of the										
		information security service.										
		Organizational framework and	_									
		principles of information	5							v	v	v
		protection service. The										
		procedure for creating an										
		information security service.										
		Principles of organization and										
		activities of the information										
		security service. Organization										
		of interaction between										
		information security services										
		and departments and external										

				T	<u>г г</u>	<u> </u>						<u> </u>		
		information security services.												
		Technology, principles and												
		methods of managing												
		information security services												
56	The organization of													
	microprocessor	characteristics, scopes and												
	systems	features of work of												1
		microprocessor means.												
		Designing of microprocessor												
		systems. levels of												
		representation of												
		microprocessor system.												Ì
1		Architecture of												l
		microprocessors of family												
		Intel. Operating modes of												
		microprocessors. The												
		organization of a subsystem of	5						v				v	
		memory in the personal												
		computer the Basic features of												
		RISC-processors. System of												
		interruptions and exceptions.												
		Types and characteristics of												
		interfaces. Programming of												
		work of separate blocks of												
		microprocessor systems.												
		Digital alarm processors												
		(DSP). Tendencies of												
		development of												
		microprocessors.												l
57	Designing	The curriculum is aimed at												
	cryptographic	acquainting students with the												l
1		basic principles of designing	5				v				v			l
1	systems	cryptographic information	5				•				v			l
	575101115	security systems, using												l
		security systems, using												<u> </u>


		methods of cryptographic					T						
		information protection in the											
		design and operation of											
		information and											
		communication technologies,											
		managing cryptographic keys,											
		generating, storing and											
		distributing keys.											
58	Intrusion Prevention	Risks and channels of											
	Systems	information leakage,											
		classification of information											
		security violators. Extended											
		persistent threats. Data leakage											
		protection technologies. Data											
		Leakage Prevention (DLP)											
		systems. Tasks of DLP											
		systems, components of a data											
		leakage prevention system.											
		Classification of DLP systems,	5										
		methods of detecting	5			v		v	v		v		
		confidential information.											
		Stages of DLP systems.											
		Development of a data leakage											
		prevention system. Analytical											
		tools for incident investigation											
		and analysis. IPC technologies,											
		IPC tasks, components.											
		Integration of DLP systems											
		with IPC / IDS and SIEM											
		systems.											
59	Standardization and												
		standardization and	~										
	cryptographic tools	certification in the field of	5		v								
		information security.											

		Standardization and									
		certification - prerequisites,									
		goals and objectives.									
		Conceptual model of									
		information security. Theory									
		and practice of standardization									
		and certification in the field of									
		information security. The									
		development of a functional									
		model of standardization and									
		certification. General criteria									
		for assessing the security of									
		information technology.									
		Problems and prospects for the									
		development of									
		standardization and									
		certification. Technical									
		specifications and regulatory									
		standards for standards and									
		certifications. Modern									
		principles of standardization									
		and certification.									
60		Protection of information									
	methods of	should ensure that Loss (theft,									
	information	loss, distortion, forgery) of									
	protection	information in Any form of it.									
		The organization of measures									
		for the protection of	5				v		v	v	
		information should be	5				v		v	v	
		conducted In full compliance									
		with applicable laws and									
		regulations on information									
		security, the interests of users									
		of information. To guarantee a									

high degree of information						
protection, it is necessary to						
constantly solve complex						
scientific and technical						
problems of developing and						
improving the means of its						
protection.						

5. Curriculum of educational program

NON-PROFIT JOINT STOCK COMPANY "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.LSATBAYEV

								6	50	6	50		50		60
	Total by UNIVERSITY:							32	28	31	29	30	30	33	27
AAP500	Military affairs	ATT	0												
			M-1	2. Module	of addition:	l types of t	raining								
ECA108	Final certification	FC	8												8
				M-11. M	odule of fina	al attestatio	n								
AAP193	Production practice II	PD, UC	3										3		
AAP192	Production practice I	PD, UC	2								2				
SEC166	Organization and management of information security service				2/0/1										
SEC170	systems				1/1/1										
SEC170	Designing cryptographic information security	rb, cen	5	150	1/1/1		Б								-
SEC175	Internet of things security	PD, CCH	5	150	2/1/0	105	E								5
SEC142	Technical means and methods of information protection				2/0/1	1									
SEC169	Standardization and certification of cryptographic tools				2/0/1										
SEC176	Intrusion Prevention Systems	PD, CCH	5	150	2/1/0	105	E								5
SEC152	Microcontrollers				2/0/1										
SEC190	Cryptographic Information Security Systems				1/1/1										
CSE411	System and Network Administration	PD, CCH	5	150	2/1/0	105	E				1			5	
SEC151	The organization of microprocessor systems				1/1/1									1	

	Number of credits for the entire period	l of study			
Cycle code	Cycles of disciplines		C	redits	
		required component (RC)	university component (UC)	component of choice (CCH)	Total
GED	Cycle of general education disciplines	51		5	56
BD	Cycle of basic disciplines		97	14	176
PD	Cycle of profile disciplines		45	20	1
	Total for theoretical training:	51	142	39	232
FC	Final attestation	8			8
	Total:	59	142	39	240

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol N: 5 "24" november 2022 y.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol № 3 "17" november 2022 y.

Decision of the Academic Council of the Institute Automation and Information Technologies. Protocol N: 2 "21" september 2022 y.

Governing Board member - Vice-Rector for Academic Affairs

Institute Director Automation and Information Technology

Department Head "Cybersecurity, information processing and storage"

Representative of the Council from employers

Se B.A.Zhautikov Kery R.K.Uskenbayeva R.Zh.Satybaldieva .V.Pokusov